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Abstract
In the current financial markets, where portfolio optimization re-
mains a significant challenge, the dynamic changes in market condi-
tions and investment demands render the development of an effec-
tive portfolio optimization framework more crucial than ever. This
study introduces an end-to-end portfolio optimization framework,
termedQuality-Growth-Momentum-Sentiment-Bayesian Optimiza-
tion Asset Portfolio (QBOAP), aimed at constructing robust and
profitable asset portfolios within the A-share stock market. The
framework enhances both portfolio performance and trading value.
The QBOAP framework utilizes the Quality-Growth-Momentum-
Sentiment (QGMS) feature set to capture a comprehensive array of
market information, ensuring that feature combinations are both
representative and explanatory. A novel loss function is employed
within this framework, incorporating considerations of return curve
stability and feature exposure, and is optimized using a Bayesian
optimization algorithm to determine the optimal asset weights.
Additionally, the framework integrates a weight rank-based trad-
ing strategy designed to minimize transaction costs and complex-
ity, thereby improving overall trading value. Empirical validation
through backtesting from 2017 to 2024 reveals that the QBOAP
framework achieves a Compound Annual Growth Rate (CAGR)
of 0.216, a Sharpe ratio of 1.46, and a Calmar ratio of 1.60. These
metrics are superior to those of ten baseline models, demonstrating
the framework’s effectiveness and offering valuable insights for the
construction and optimization of A-share portfolios.
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1 INTRODUCTION
The preservation and appreciation of residents’ wealth is an impor-
tant driver of national economic growth. In China, the effectiveness
of asset allocation is crucial to preserving and appreciating of wealth
due to the large total amount of residents’ wealth [1][2]. However,
in recent years, with the proliferation of investable underlying as-
sets and the explosion of information, traditional asset allocation
strategies are faced with the dual challenges of the number of assets
and the dimension of investment information. Under such circum-
stances, traditional asset allocation methods struggle to meet the
needs of investors. Therefore, it becomes especially urgent and
important to construct an asset allocation method that adapts to
modern investment needs.

Classical asset allocation models (e.g., the Markowitz mean-
variance model [3]) typically use a two-step strategy: first estimat-
ing the distribution of returns (including the mean and covariance
matrices of the returns), and then deciding the portfolio weights
based on these estimates [4][5]. However, this asset allocation
strategy suffers from the following shortcomings: first, predicting
asset returns is a very non-trivial task that may generate prediction
errors that can affect the final portfolio decision, and the estimation
of the covariance matrices becomes unstable when dealing with
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a large number of variables [6]. Second, this two-step strategy
breaks the organic link between return distribution estimation and
portfolio decision-making, and the return distribution estimation
is merely an intermediate step in portfolio decision-making; and
minimizing its estimation error, such as Mean Squared Error, does
not necessarily lead to portfolio optimization [7].

To overcome the above two problems of traditional asset allo-
cation models, an end-to-end model has been proposed to directly
predict portfolio weights based on asset features. This approach
allows for direct optimization of portfolio metrics by circumvent-
ing the estimation of the covariance matrix of expected means and
returns [8][9]. However, the significant increase in asset features
renders traditional regression models and portfolio ranking meth-
ods no longer applicable, making it difficult to extract the effective
signals in high dimensional and massive data. Therefore, existing
research methods are facing the challenge of “garbage in, garbage
out” [10]. Determining a reasonable feature integration to identify
the key factors affecting model performance remains a challenge.
In addition to feature construction and selection, the formulation of
optimization problem is equally important in effectively controlling
portfolio risk while maintaining portfolio returns. Finally, the trad-
ing value and feasibility of the model are also significant aspects
of evaluating the portfolio. Therefore, there are three main issues
when using optimization algorithms to construct asset portfolio
allocation models: (a) feature construction and selection (b) opti-
mization problem formulation and (c) trading value of the model.
These three issues are discussed in detail as follows.

(a) Feature construction and selection. Some studies [12][13][14]
have considered only asset prices when performing portfolio opti-
mization, ignoring other characteristics that may have significant
explanatory power for asset returns. This approach may result in
models that lack generalization ability due to insufficient sample
information. In contrast, Park et al.[15] established a twin-system
recurrent reinforcement learning with technical features related to
historical prices up to the present and fundamental features related
to macroeconomic factors and specific industry characteristics. Ma
et al.[16] selected 13 financial indicators from value, profitability,
operating status, growth and solvency to construct a three-level
nested portfolio optimization model. These studies subjectively
select fundamental and technical features to solve optimal weights
for assets, but the features are not systematic enough to include
comprehensive information in the stock market. Therefore, how to
construct a combination of features that is both representative and
explanatory is worth exploring in depth.

(b) Optimization problem formulation. The core of portfolio
optimization and asset allocation lies in the construction of the op-
timization objective / loss function. Existing studies have explored
the application of various optimization objectives in portfolio op-
timization. Lv et al. [17] formulated a five-objective optimization
problem that incorporates mean, variance, skewness, kurtosis, and
distance-to-default as key consideration. Bedoui et al. [12] investi-
gated the potential benefits of using the Conditional Value at Risk
(CVaR) portfolio optimization approach. Savaei et al. [13] measured
risk based on the conditional drawdown-at-risk (CDaR) measure,
which could prevent major declines in investment as a conserva-
tive investment strategy. However, few studies have considered
optimizing the slope of return curve to ensure a stable increasing

cumulative return. If the portfolio’s drawdown can be minimized by
optimizaing the curve’s shape, portfolio returns can be amplified by
increasing leverage while maintaining a reasonable return to risk
ratio [18]. It is also important to control the portfolio’s exposure to
a particular feature [19]. There are differences in the explanatory
power of different factors varies across different markets. If the
portfolio’s exposure to a particular characteristic is too high, it may
cause the model to earn better returns in markets where that charac-
teristic has stronger explanatory power and face losses in markets
where the characteristic is less explanatory. However, most of the
relevant studies consider controlling for asset-specific positions and
do not control for the weights of the features. Therefore, balancing
portfolio returns with maximum drawdown, as well as reasonably
controlling the portfolio’s exposure to each feature, are key issues
that need to be studied in depth in portfolio optimization.

(c) Trading value of the model. The primary goal of portfolio
optimization model is to provide valuable recommendation for real-
world trading. However, existing portfolio optimization research
suffers from two problems in terms of trading value. The first is
selection bias. Wu et al. [20] selected a dataset of 55 stocks from
the Chinese A-share market, training their model from 2018 to
2019 and testing it from 2020 to 2021. Wang and Aste [21] selected
100 stocks from NSDQ, FTSE and HS300 during the trading period
between 2010 and 2020. Alzaman studied 100 stocks traded on
the Toronto Stock Exchange (TSE) from 2015 to 2021 to train and
test DeepRank model. These studies subjectively choose the asset
pool for portfolio optimization and the backtesting period [22].
Chen and Huang [23] carried out empirical analysis on 122 cases of
Taiwanese equity mutual funds from 2003 to 2006. This introduces
selection bias, as the performance of the asset pool at a specific
time cannot be known at the beginning of the backtesting period.
Thus, the selection of the asset pool and backtesting time range
should bemore general to make the results more robust and credible.
The second problem is trading difficulty. Some existing portfolio
optimization studies are usually conducted for a larger stock pool
containing many stocks [24][25]. However, trading a large number
of stocks brings high commission and trading difficulty, which is
unfavorable for real trading applications. Therefore, constructing a
more stable portfolio with a more optimal number of assets based
on the calculated optimal weights is a worthwhile research problem.

To address the above issues, this study aims to develop an opti-
mization algorithm-driven end-to-end asset allocation model. The
model is capable of capturing financial market returns while control-
ling portfolio risk with both trading value and trading feasibility.
In this model, a stock market feature framework QGMS is first
set up to construct a feature set with strong explanatory power
for asset returns from four dimensions: quality, growth, momen-
tum and sentiment. Based on the constructed features, this paper
constructs an optimization framework that considers the tradeoff
between portfolio return and maximum drawdown, while utilizing
L1-regularization to control the weight of each feature. Further-
more, it adopts the Bayesian optimization algorithm to solve the
optimization problem. Finally, a feasible and profitable trading
strategy based on portfolio weights is developed to enhance its
trading value. The proposed QGMS – Bayesian Optimization –
Asset portfolio (QBOAP) model is compared with various models to
verify its performance. The rest of this paper is organized as follows.



A Novel End-to-end Framework for A-share Stock Market Portfolio Optimization Considering Risk Measure and
Feature Exposure ICBDT 2024, September 20–22, 2024, Hangzhou, China

Section 1 analyses and summarizes the research idea of this paper.
Section 2 presents the methodology adopted to set up the feature
framework and optimization problem. Section 3 presents various
comparative experimental results and discussions to demonstrate
the effectiveness of the proposed approach. Section 4 provides
conclusions and directions for future research.

2 MODEL FRAMEWORK
This section introduces the framework of the proposed
QBOAP framework: Quality-Growth-Momentum-Sentiment-
BayesianOptimization-AssetPortfolio. The in-depth procedure is
detailed below.

(1) Feature construction: This step aims at constructing a high-
quality feature set for optimal weight solution. Four angles are
taken into account: Quality, Growth, Momentum and Sentiment.
Quality assesses the fundamental strength of the company, Growth
evaluates its future expansion potential, Momentum looks at recent
price trends, and Sentiment gauges market perception and investor
attitudes. By integrating insights from these four angles, a more
comprehensive and robust information set can be established. After
calculating the factors, in order to solve the problem that the factor
values contain outliers, and stocks with different market capitaliza-
tion and industries cannot be compared under the same scale, this
paper carries out MAD outlier treatment, Z-score standardization
and market capitalization and industry neutralization on the factor
values.

(2) Optimization problem setting: This step solves the optimal
weight from the constructed feature set. A novel term considering
the slope and maximum drawdown of the return curve is adopted
to optimize the performance of the portfolio, while a regularization
term to control the exposure of feature on portfolio is used to
make the portfolio more robust. Further, Bayesian Optimization
Algorithm is utilized to solve the optimization problem.

(3) Trading strategy construction: Aimed at reducing the trading
difficulty in order to enhance the trading value of the framework,
a weight rank based trading strategy is proposed to construct the
final investment portfolio. To evaluate the performance of strategy,
eight metrics are adopted: CAGR, Sharpe, Calmar, Sortino, Omega,
TailRatio, RankIC, ICIR. The larger the values of these metrics are,
the better the performance of the constructed portfolio.

2.1 Feature Construction
This paper constructs a feature framework QGMS for equity portfo-
lios that integrates multidimensional factors such as firm financial
quality, growth, momentum, and market sentiment. More details
for QGMS can be found as follows, separately:

Quality Factor: Factors that measure a company’s financial con-
dition and profitability.

Ratio of net cash flow from operating activities to enterprise
value (cfo_to_ev): measures a company’s ability to generate cash
flow through the ratio of net cash flow from operating activities
to enterprise value, where enterprise value is equal to the sum of
the company’s market capitalization and liabilities minus money
funds, i.e.

2 5 >_C>_4E =
��$))"
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(1)

Cash-to-current-liability ratio (cfo_to_li): A measure of a com-
pany’s ability to utilize cash flow to pay off current liabilities, i.e.
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Profitability Stability (margin_stability): Calculated using the
mean and standard deviation of gross margins over 8 years to
measure the stability of a company’s profitability, i.e.
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where GM is the gross margin TTM over the last 8 years.
Return on invested capital (roic_ttm): A measure of a company’s

ability to generate net profit from invested capital, i.e.
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Operating Profit to Total Operating Revenue
(ope_profit_to_ope_rev): Reflects the ratio of the company’s
operating profit to its total operating revenue to assess the
company’s profitability, i.e.

>?4_?A> 5 8C_C>_>?4_A4E =
$?4A0C8=6 %A> 5 8C))"
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(5)

Growth Factor: Factors that measure the company’s develop-
ment speed and growth potential.

Net cash flow growth rate from operating activities (cfo_gr):
Measures the annual growth rate of the company’s net cash flow
from operating activities, i.e.

2 5 >_6A = ��$))", C

��$))", C−4
− 1 (6)

PEG: Assesses the growth of a stock through the ratio of the
price-earnings ratio (PE) to the growth rate of net profit attributable
to the parent company, i.e.

%�� = %�
100 ∗ #4C�=2><4 �A>FCℎ'0C4))"

(7)

Total Assets Growth Rate: Measures the rate of expansion of a
company’s assets, i.e.

C0_6A = )>C0;�BB4CC
)>C0;�BB4CC−4

− 1 (8)

Momentum Factor: Factors that are mainly based on the momen-
tum and trend analysis of stock prices.

Money Flow Indicator (MFI_14): Assesses market momentum
through typical price, volume and positive and negative money
flows, i.e.

"��_14 = 100 − 100
1+"'14

(9)

Where:
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6 Day Closing Price to Date Linear Regression Coefficient (PLRC_6):
Analyzes price trends using the linear regression coefficient of the
6-day closing price to the date sequence number. It is solved by
fitting the following OLS function, i.e.

�!$(�C
1
6
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= %!'�_6 ∗ C + U (12)
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Bullish Power (bull_power): A measure of market long power by
the ratio of the difference between the highest price and the 13-day
exponential moving average to the closing price, i.e.

1D;;_?>F4A = ����−�"�(�!$(�,13)
�!$(�

(13)

Bollinger Bands Down (boll_down): Analyzes the range of price
fluctuations through the ratio of the lower Bollinger Bands to to-
day’s closing price, i.e.
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5-Day Ultimate Indicator (TRIX_5): Calculates the composite move-
ment of the 5-, 10-, and 5-day exponential moving averages to
analyze trend reversal signals, i.e.

")' = �"� (�"� (�"� (�!$(�, 5) , 10) , 5) (15)
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60-Day Moving Average (mac_60): The ratio of the 60-day moving
average to today’s closing price, which is used to assess long-term
trends, i.e.

<02_60 =
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8=C−59�!$(�C
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(17)

Sentiment Factor: Factors that represent the confidence and
sentiment of market participants.

Standard deviation of 6-day turnover (amstd_6): Measures the
volatility of the market through the standard deviation of turnover,
i.e.
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Turnover relative volatility (turn_vol): Analyzes changes in mar-
ket sentiment through the standard deviation of turnover of indi-
vidual stocks over 20 trading days, i.e.
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5-day average turnover ratio to 120-day average turnover ratio
(turn_5_120): Measures the difference between short-term and
long-term trading activities through the ratio of 5-day average
turnover ratio to 120-day average turnover ratio, i.e.
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To sum up, this QGMS feature framework is constructed with
the aim of capturing the multiple attribute characteristics of stocks
through a comprehensive multi-dimensional and multi-frequency
factor analysis, which in turn provides more effective explanatory
variables for the solution of asset weights.

2.2 Feature Preprocessing
The preprocessing of factor incorporates four parts: Standardiza-
tion, Outlier processing, Size neuralization and Industry neuraliza-
tion. Through these steps, the final factors are cleansed of outlier,
size, and industry influences, providing a clearer view of the inner
relationships with the future return and proper weight they are
meant to measure.

2.2.1 Outlier processing. The first step involves identifying and
handling outliers using the Median Absolute Deviation (MAD)
method. Outliers can significantly skew results, so it’s essential to
address them. The MAD is calculated as follows:

"�� =<4380= ( |-8 − -<4380= |) (21)
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(22)
where Xi represents the factor value and median(X ) is the median
of these values. Values that exceed a certain multiple of the MAD
(typically 3) are considered outliers and can be handled by capping
them to a threshold value or removing them from the dataset.

2.2.2 Standardization. After outlier treating, the next step is to
standardize the factors. This process involves transforming the
factor values so they have a mean of zero and a standard deviation
of one. The standardization is performed using the Z-score method:

/8 =
-8−`
f

(23)

where Zi is the standardized factor value, Xi is the original factor
value, ` is the mean of the factor, and f is the standard deviation.
This transformation ensures that all factors are on a comparable
scale, making it easier to analyze them collectively.

2.2.3 Market size neuralization. Factors are often influenced by the
size of the company, measured by its market capitalization. To neu-
tralize this effect, a regression is performed with the standardized
factor values as the dependent variable and market capitalization
as the independent variable:

-8 = U + V ∗"+8 + ∈8 (24)

where, Xi denotes the standardized factor value, MVi is the market
capitalization, U and V are the regression coefficients, and n i is
the residual. The size-neutralized factor value is then obtained by
subtracting the effect of market capitalization:

-
′
8
= -8 − V ∗"+8 (25)

2.2.4 Industry neuralization. Finally, the factors are neutralized
for industry effects, which can significantly impact factor behavior.
This is done by regressing the size-neutralized factor values against
industry dummy variables:

-
′
8
= U +∑:

9=1 W 9 �8 9 + ∈8 (26)

where X’i is the size-neutralized factor value, Iij represents dummy
variables for the k industries, and W j are the industry-specific coeffi-
cients. The residuals n i from this regression represent the industry-
neutralized factor values:

-
′′
8
= ∈8 (27)

2.3 Optimization Problem Formulating
In financial research, asset characteristics can be used to predict ex-
pected returns [26][27][28], i.e., expected returns can be expressed
as a function of asset features:

`C+1 = ` (-C ) , (28)
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where Xt denotes the asset characteristics at time t, and `t denotes
the expected return of the asset at time t+1. Asset features can
also be used to estimate the covariance matrix[29][30], i.e., the
covariance matrix can be expressed as a function of asset features:

fC+1 = f (-C ) , (29)

where f t+1 denotes the covariance matrix of the asset at time t+1.
According to mean-variance theory, the portfolio weights are a

function of the expected returns and the covariance matrix[3][31],
which can be determined by as follows:

,C+1 = 5 (` (-C ) , f (-C )) , (30)

where f (·) denotes the functional relationship between the expected
return and covariance matrices and Wt+1 denotes the portfolio
weights at time t+1. If the expected return and covariance matrices
are first estimated through the asset characteristics and then used
to estimate the portfolio weights, the intermediate steps are in-
evitably subject to prediction errors, making the estimation process
cumbersome. Since Eq. (30) can also be interpreted as the portfolio
weights Wt+1 being a function of asset characteristic Xt , further
simplify expressed to:

,C+1 = 5< (GC ;\ ) , (31)

The portfolio weights Wt+1 are directly estimated through the
asset characteristics Xt , where fm(·) denotes a function of the asset
characteristics Xt and \ is the parameter to be estimated. Based
on Brandt [32] assumption, the optimal weight can be presented
as a linear combination of asset features. Therefore, the fm(·) can
be further simplified as a linear combination of Xt and \ . Based
on this, this paper employs convex optimization techniques to fit
the complex underlying functional relationships, with the portfolio
tilted towards stocks that contribute to increasing the investor’s
utility:

,C+1 =,C+1 + 5< (GC ;\ ) , (32)

where,C+1 is the base weight in period t+1, representing an equal
weight used to adjust the portfolio estimated from the asset charac-
teristics. The resulting portfolio return in period t+1 is:

A?,C+1 (\ ) = ,̄)
C+1AC+1 + 5< (GC ;\ )) AC+1, (33)

where rt+1 denotes the return vector of the asset in period t+1. To
solve for \ , we maximize the utility function, i.e., the loss function,
designed in this paper. The loss function consists of two parts: one
based on the ratio of the portfolio’s return multiplied by the the
slope of cumulative return curve to the maximum drawdown, and
the other controlling for the L1 regularization term of the individual
feature weights. It is represented as follows:

First, given the return curve, fit the OLS function of cumulative
return and time to solve the slope term, where n is the total time
length of return curve:

2D<A4CC = B;>?4 ∗ C+ ∈, C = 1, 2, . . . , =. (34)

Then, based on the slope, the loss function is constructed as:
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Additionally, the optimal portfolio weights �,C+1 are obtained in an
end-to-end manner using Eq. (32).

2.4 Construction of Weight-based Trading
Strategy

Given that the total stock pool consists of over 5000 stocks, trans-
ferring all stocks according to their optimal weights would face
substantial huge transaction costs. Therefore, after determining the
stock weights, this paper designs an investment strategy based on
factor cross-section ranking. Specifically:

Step1: Define the weight range. Suppose the ith stock with
weight of Wi, sort the weights in ascending order to obtain a list
{W1,W2,W3,…,Wn}, where W1 <W2<…<Wn .

Step2: Define the trading stock. For stocks in the top 10%, range
of there weights are considered to have a higher probability of going
up and the strategy is to go long on these stocks: { W(n-[0.1n]+1) , …
, W(n)}. For the bottom 10% stocks, the strategy will go short on
them:{ W(1) , … , W([0.1n])}.

2.5 Strategy Evaluation
After constructing the long-short asset portfolio based on optimal
weights, this paper further analyzes and evaluates the portfolio’s
performance in a comprehensive manner. The following eight key
metrics are adopted to measure the model results: Compound An-
nual Growth Rate (CAGR), Sharpe Ratio, Calmar Ratio, Sortino
Ratio, Omega Ratio, Tail Ratio, Rank Information Coefficient (Ran-
kIC), and Information Coefficient Information Ratio (ICIR). Com-
pound Annual Growth Rate (CAGR) assesses the average annual
growth rate of an investment over a specific time period, account-
ing for the compounding effect of returns, thus providing a clear
picture of long-term return performance. Sharpe Ratio measures
excess return per unit of risk and reveals risk-adjusted investment
performance by comparing the difference between the investment
return and the risk-free rate. Calmar Ratio focuses on maximum
drawdown-adjusted return, reflecting an investment’s ability to re-
cover from a significant loss. Sortino Ratio is similar to the Sharpe
Ratio, but emphasizes downside risk, evaluating risk-adjusted re-
turns by considering only negative volatility. Omega Ratio takes
into account the full range of probabilities of gains and losses, pro-
viding a comprehensive measure of risk-return. Tail Ratio measures
the risk of extreme gains or losses by comparing the tail behavior of
a portfolio’s return distribution. Rank Information Coefficient (Ran-
kIC) assesses the correlation between a model’s predictive rankings
and its actual return rankings, reflecting the model’s predictive
power. Information Coefficient Information Ratio (ICIR), measures
the stability of RankIC, reflecting the reliability of the model’s pre-
dictive accuracy over time. By using these metrics together, we can
comprehensively assess the performance of investment models in
terms of return, risk and forecast accuracy.

3 RESULT AND DISCUSSION
3.1 Results of Proposed Model
3.1.1 Experiment setting. Dataset: This experiment incorporates
all A-share data from January 1, 2010 to May 31, 2024, and with
20 features introduced by the QGMS framework. All features are
pre-processed as described in Section 2 before being input into the
model.
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Figure 1: Quantile Return of Optimal Weight (left); Long-short Portfolio Return(right)

Backtest: We conduct a backtest of the strategy on the entire
A-share stock pool using a rolling backtesting approach. The train-
ing set spans 5 years, the validation set covers 2 years, and the test
set lasts 1 year, with the model re-trained every 12 months. The
training objective is to minimize the loss function and the optimal
hyperparameter are determined using the validation set. Back-
testing is performed on a monthly basis, excluding stocks that are
suspended on trading days and stocks that hit the upper or lower
price limits. The strategy involves taking long positions in the top
10% of stocks based on predicted returns and short positions in
the bottom 10% of stocks. Stock positions are equally weighted.
Backtested returns are calculated using compounding, and excess
returns are calculated as the ratio of the strategy return to the
benchmark return (All A-Share Return). The backtest does not
account for slippage, fees, or the cost of financing short positions.
Since an equal number of stocks are used for shorting and longing,
the strategy effectively employs double leverage, using the initial
capital for the long positions and disregarding the capital needed
to finance the short position.

Baseline: To demonstrate the performance of our proposed
model, we compare the loss function used in this paper with other
loss functions proposed. Specifically, (1) for performance optimiza-
tion of the return curve, we compare model performance using
Sharpe, Calmar, Mean-Variance, VaR, CVaR, and CDaR as loss func-
tion (2) for model sparsification, we compare model performance
using the L2 norm, elastic net norm, and the L1 and L2 norms for
singal asset positions.

Backtest metrics: We use the following eight indicators to
measure the model results: CAGR, Sharpe, Calmar, Sortino,Omega,
TailRatio, RankIC and ICIR. The definitions of each indicator are
provided in Section 2.5.

Experiment detail: The experiment is conducted using an
Apple M3 Pro with an 18GB CPU. The hyperparameter lambda
optimization range is [0,0.1], with a search step is 0.01. The feature
weight optimization range is [1e-1, 5e-2]. The number of training
rounds is set to 100 trials. The training set, validation set and test
set cover 5 years, 2 years and 1 year, respectively.

3.1.2 Result Analysis. In this section, we first examine the result
of our proposed QBOAP framework. To provide a comprehensive
analysis of the determined weight, we rank the weight into ten
quantiles and compared the returns of each quantile. Then, we
construct a long-short portfolio using the first quantile and the last

quantile based on the weight-ranking rule. The results are shown
in Fig. 1

The solved weights are divided into ten quantile, with g1 repre-
senting the smallest and g10 representing the largest. As show Fig.
1. on the left, assets in the lowest weight group exhibit a significant
tendency to lose money, while the returns of the asset portfolio
increase as the weights increase, reflecting the effectiveness of the
weights in predicting the future asset returns. However, the mono-
tonicity between weight values and returns gradually disappears
in the highest-weighted portfolios. This is due to the loss function
is designed to minimize drawdown and therefore it does not assign
larger weights to the tail samples with more extreme returns. The
return profile of the long-short portfolio, constructed based on the
weight values is shown on the right. It significantly outperforms the
benchmark returns, demonstrating the effectiveness of the strategy.
On the right, the cumulative returns of long, short, long-short and
benchmark portfolio are represented by quantile group 10, quantile
group 1, the long group 10, the short group 1 and the overall A-share
market return, respectively. It can be concluded that the long-short
group achieves a relatively stable and high return, indicating the
effectiveness of the weight-rank strategy. Moreover, from 2022 to
2024, profit were significantly larger due to the pronounced bear
trend in the A-share market, where the quantile group 1 could
earn stable return by short stock with a high probability of losing
money. This also suggests that our strategy has greater exposure
to short-side returns, which aligns with the previous analysis.To
further analyze the performance of our proposed QBOAP model,
we examine the metrics of each quantile and long-short portfolio,
more details could be founded in Table 1.

From the quantile analysis in Table 1, the monotonicity be-
tween weight values and returns gradually disappears in the high-
weighted portfolios. Specifically, the returns for quantiles 7-9 hover
around 0.039, while the return for quantile 10 drops to 0.013. More-
over, the return of long-short group has more exposure to short-side
return, which produces a 0.18 CAGR with a Sharpe Ratio 0.77. Fur-
thermore, we compare the performance of our proposed model with
the baseline, as Pnl curve shown in Fig 2 and evaluation metrics
shown in Table 2.

As shown in Fig. 2, the proposed QBOAP framework achieves
the highest return and maintains moderate volatility compared to
other baseline methods. And as presented in Table 2, the combined
strengths of the QBOAP model are particularly evident across sev-
eral key financial metrics. First, the Compound Annual Growth
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Table 1: Comparison ofQuantile Return in QBOAP model

quantile CAGR SR CR Sortino Omega TR

1 -0.180 -0.77 -0.23 -0.92 0.56 3.49
2 -0.055 -0.16 -0.12 -0.22 0.88 1.61
3 -0.005 0.08 -0.01 0.12 1.07 1.72
4 -0.005 0.19 -0.01 0.28 1.16 1.88
5 0.028 0.24 0.08 0.36 1.21 1.96
6 0.018 0.19 0.05 0.29 1.16 1.90
7 0.040 0.29 0.10 0.45 1.25 2.08
8 0.039 0.28 0.10 0.45 1.25 2.03
9 0.038 0.28 0.09 0.45 1.24 2.18
10 0.013 0.16 0.03 0.26 1.13 1.98
Long-Short 0.216 1.46 1.60 3.61 3.20 4.06

Figure 2: Pnl Comparison of QBOAP framework and Baseline

Table 2: Comparison of QBOAP framework and Baseline

Term Model CAGR SR CR Sortino Omega TR RankIC ICIR

Opt
Term

QBOAP 0.216 1.46 1.60 3.61 3.20 4.06 0.040 0.409
Sharpe 0.055 0.55 0.25 0.91 1.53 1.65 0.013 0.177
Calmar 0.133 1.12 0.61 2.26 2.35 2.58 0.028 0.350
MV 0.033 0.39 0.16 0.65 1.35 1.60 0.005 0.074
VaR 0.027 0.31 0.12 0.49 1.27 1.58 0.003 0.043
CVaR 0.020 0.24 0.08 0.37 1.20 1.52 0.004 0.050
CDaR 0.146 1.14 0.90 2.41 2.54 3.00 0.029 0.324

Sparse
Term

Feature-L2 0.162 1.19 0.87 2.64 2.55 3.34 0.030 0.318
Feature-EN 0.185 1.33 1.02 2.88 2.84 3.57 0.037 0.400
Position-L1 0.163 1.24 1.00 2.61 2.59 3.20 0.032 0.348
Position-L2 0.187 1.45 1.28 3.03 2.77 3.85 0.035 0.411

Rate (CAGR) is a core metric for assessing long-term investment
growth. The QBOAP model’s CAGR of 0.216 is significantly higher
than that of other models, indicating that it achieves substantial
average annualized return growth over the investment duration.

This high growth rate means that the QBOAP model not only per-
forms strongly in terms of returns, but also consistently delivers
stable income. The QBOAP model also outperforms other models
in various ratios. For example, the Sharpe ratio, which measures
return per unit of risk, is higher in the QBOAP model, indicating
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Table 3: Ablation Experiment for QBOAP

w/o term CAGR SR CR Sortino Omega TR RankIC ICIR

QBOAP 0.216 1.46 1.60 3.61 3.20 4.06 0.040 0.409
w/o Feature 0.045 0.31 0.11 0.48 1.27 1.62 0.008 0.052
w/o slope 0.152 1.17 1.27 2.58 2.52 3.00 0.031 0.339
w/o return 0.171 1.21 1.21 2.64 2.65 3.63 0.033 0.330
w/o drawdown 0.189 1.28 1.02 3.03 2.77 3.85 0.034 0.338
w/o regularization 0.147 1.04 0.69 2.31 2.38 2.90 0.031 0.318
w/o strategy 0.072 1.18 1.44 2.70 2.75 1.71 NA NA

a better risk-adjusted return for the investment strategy, and the
QBOAP model’s high Sharpe ratio suggests that it can provide
higher returns than other models for the same amount of risk. For
example, the Sharpe ratios of Feature-EN and Position-L2 in the
Sparse model are 1.33 and 1.45, respectively, which are close but still
not as good as the QBOAP model. This reflects QBOAP’s superior
ability to optimize the balance between risk and return.

Overall, the QBOAP model outperforms in several key metrics,
including CAGR, Sharpe Ratio, Calmar Ratio, Sortino Ratio, Omega
Ratio, Total Return, and Forecasting Accuracy, demonstrating its
overall superiority in terms of high returns and risk management.
The leadership across these metrics demonstrates that the QBOAP
model not only delivers high returns, but also manages risk effec-
tively, making it the investment strategy.

3.2 Effective Analysis of the Proposed Model
We conduct ablation tests to verify the utility of individual models
and algorithms for investment strategies. We consider six ablation
methods and evaluate the results of each strategy. The specific
variants are explained below:

(1) w/o-Feature: We remove all the features and use only the
CLOSE price as the asset features.

(2) w/o-slope: We remove the slope term from the loss function.
(3) w/o-return: We remove the return term from the loss func-

tion.
(4) w/o-drawdown: We remove the max drawdown term from

the loss function.
(5) w/o-regularization: We remove the regularization applied

to features.
(6) w/o-strategy: We remove the trading strategy based on

weight rank.
Table 3 demonstrates the effect of gradually removing different

factors on the performance of the QBOAP model. Overall, the
QBOAP model performs well on the metrics, with a CAGR of 0.216
and a Sharpe ratio of 1.46 for the benchmark model. However,
removing the features significantly decreases the model’s CAGR to
0.045, highlighting the key role of features in the model’s ability
to generate returns. The removal of factors such as retracement
and slope, while leading to decreased model performance, suggests
that these factors significantly contribute to the stability and risk
control of the model. Overall, the experimental results show that
the components work together to ensure the combined benefits of
the QBOAP model in terms of returns, risk control and forecast
accuracy.

4 CONCLUSION
To address the challenges of feature construction, optimization
setting and trading value in financial asset portfolio optimization, a
novel end-to-end model that incorporates risk measure and feature
exposure for constructing portfolio in the A-share stock market.
In this framework, the QGMS feature framework is first proposed
to provide comprehensive and systematic information in the stock
market. Then the Bayesian Optimization algorithm along with a
loss function considering risk measure and feature exposure are
adopted to determine the optimal weight. Finally, to enhance the
trading value of the proposed model, a weight rank-based strategy
is proposed and demonstrates superior performance in comparison
to others. The main findings are summarized as follows:

(1) The QGMS feature framework play an important role in ex-
plaining the future returns of the underlying asset, significantly
improving the CAGR from 0.045 to 0.216 by introducing a compre-
hensive and representative set of features into portfolio optimiza-
tion.

(2) Optimizing the shape and stability of payoff curves, as well
as imposing restrictions on feature weights can enhance the per-
formance of portfolio optimization models, achieving the highest
CAGR of 0.216 and highest sharpe ratio of 1.46.

(3) Cross-section long-short strategies based on optimal portfolio
weights can achieve better performance while reducing trading
complexity, improving the CAGR from 0.072 to 0.216 and the Sharpe
ratio from 1.18 to 1.46.
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